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a b s t r a c t

In this paper, a cooperative control analysis and designmethod is investigated for heterogeneous dynam-
ical systems thatmay be of arbitrary relative degree or nonminimum-phase or both. To achieve consensus
or cooperative stability, a negative value of input-feedforward passivity index is used to accommodate and
analyze such systems, and themagnitude of the index value is also used as the impact coefficient to quan-
tify the impacts of heterogeneous dynamics of these systems on their networked operations. Physical-
system-level designs are explicitly carried out to make individual linear and nonlinear systems (which
are either feedback linearizable or nonminimum phase of certain form) become passivity-short and to
embed one pure integrator into their input–output dynamics. The network-level distributed control can
simply be chosen without any knowledge of the heterogeneous dynamics but with only information of
an upper bound on their impact coefficients. It is shown, using the impact equivalence principle, that
these controls separately designed but implemented together always ensure either local or global con-
sensus and that a global non-trivial consensus emerges if and only if the information network has at least
one globally reachable node or is varying but cumulatively connected. The proposedmethodology of fully
modularized designs unravels complexity of analyzing and designing cyber–physical systems and enables
their plug-and-play into networked operations.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Cooperative control deals with networked physical systems
and network-enabled distributed controls, and its analysis and
design involve both dynamics and control of individual physical
systems aswell as local communicationnetworks and information-
structured controls. Until recently, several analysis and design
techniques for cooperative control have been developed, and they
include the graph-theoretical methods of composite graph con-
nectivity (Jadbabaie, Lin, & Morse, 2003; Lin, Brouchke, & Francis,
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2004; Ren & Beard, 2005) and proximity graphs (Cortes, Martinez,
& Bullo, 2006), the matrix theoretical approach (Qu, Wang, & Hull,
2008), the Lyapunov-based methods of passivity and circle crite-
rion (Arcak, 2007; Chopra & Spong, 2006; Wu, 2001), set-valued
Lyapunov functions (Moreau, 2005), non-smooth analysis and sub-
tangentiality conditions (Lin, Francis, & Maggiore, 2007), cooper-
ative control Lyapunov function and topology-based comparison
theorems (Qu, 2008, 2009). Their applications to dynamic systems
cover a wide range of models which include the simple particle
model (Vicsek, Czirok, Jacob, Cohen, & Shochet, 1995), the first-
order integrator model (Jadbabaie et al., 2003; Lin et al., 2004; Ren
& Beard, 2005) or passive systems (Arcak, 2007), the single integra-
tor model with delay (Fax & Murray, 2004; Saber & Murray, 2004),
the linear double integrator model (Tanner, Jadbabaie, & Pappas,
2007), and cooperative canonical systems (Qu et al., 2008). In spite
of these advances, there are still many applications of networked
control of heterogeneous systems that the current theory and
design methods cannot handle, especially when there is a need to
enable their plug-and-play into their networked operations. As an
example, the analysis and design techniques of cooperative control
that involve cyber–physical systems, such as the control and op-
timization of distributed generation and storage devices in smart
grids (see Maknouninejad, Lin, Harno, Qu, & Simaan, 2012 and Xin,
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Qu, Seuss, & Maknouninejad, 2011 and references therein), need
to be further developed. In particular, new techniques are desired
to properly unwind the entanglement among system dynamics,
(unknown) network information flows, and individual as well as
network-level control designs. Appropriate impact analysis and
design separation will enable us to obtain general conclusions on
heterogeneous physical systems and their networked operations.

Often, physical systems have heterogeneous dynamics and
their networked operations should be maintained even when
some of their physical components get upgraded or exchanged.
Accordingly, there is a need to characterize what physical systems
are ready for plug-and-play operation and how their controls and
network-enabled distributed controls can be designed separately.

The framework of dissipativity provides a way of analyzing
input–output properties of certain nonlinear systems, and hence
it can also be used to investigate operation of networked systems.
It is worth noting that, although the concept of passivity is limited
to minimum-phase systems of relative degree one (or zero), it has
been widely used in designing model reference adaptive control
(Parks, 1966), control of roboticmanipulators (Spong&Vidyasagar,
1989), and adaptive control of nonlinear systems (Kokotovic,
Krstic, & Kanellakopoulos, 1992). While these controls are to
achieve asymptotic stability (i.e., a trivial consensus), a nontrivial
consensus is a more general stability concept that captures the
emergent behavior of networked dynamic systems, and its value
is dependent upon both initial conditions of the systems and
network topology. Consensus of passive systems has been shown
for balanced and strongly-connected graphs in Chopra and Spong
(2006) and for strongly-connected graphs in Zhang, Lewis, and Qu
(2012). These two results provide a hint that there are classes of
physical systems which are ready for networked operation and
for which distributed control can be designed independently of
system dynamics.

The objective of this paper is to develop a fully modular design
methodology by which a self-feedback control can be designed in-
dividually for each of heterogeneous systemswhile their network-
level distributed control can also be synthesized separately. To this
end, we use the concept of passivity shortage (for systems whose
input-feedforward passivity index value is negative) to include
systems of high relative degree and nonminimum phase and to
provide the measure of quantifying the impacts of heterogeneous
dynamics on their networked operations. Our approach shows
that, for dynamical systems to achieve a nontrivial consensus, their
individual closed-loop dynamics should be Lyapunov stable but
not asymptotically stable, and these individual systems should be
networked with positive network connections and individual neg-
ative output feedback. We consider modular designs to achieve
these properties through appropriate canonical forms as well as all
possible structures of information flow, and we show that analysis
and design of distributed control does not require explicit knowl-
edge of systemdynamics but only needs an upper bounded on their
maximum impact. While the preliminary version of so-called gen-
eralized passive systems was introduced in Qu (2012), the results
reported therein were limited to affine systems, the information
topologywas confined to be fixed and strongly-connected, and de-
sign procedures are not presented. In contrast, this paper develops
a fully modular systematic design methodology and untangles the
complexity of interactions between system dynamics and network
topology.

The remainder of the paper is organized as follows. In Section 2,
the problem of modularly designing self-feedback and distributed
controls is formulated. In Section 3, tools for analyzing in-
put–output properties of nonlinear systems and their networked
operation are developed. In Section 4, two procedures for design-
ing self-feedback controls are detailed to make linear systems and
affine nonlinear minimum-phase systems become cooperative PS
systems, then a simple design of distributed control is presented,
and the so-called impact equivalence principle is established to
ensure the emergence of nontrivial consensus under separately
designed controls. It is shown in Section 5 that the impact equiva-
lence principle also holds for time-varying information networks.
Section 6 contains concluding remarks.

2. Problem formulation

Consider ns heterogeneous physical systems in the form of
żi = Fi(zi, vi), yi = Hi(zi), (1)
where i ∈ {1, . . . , ns}. In (1), zi ∈ ℜ

ni is the state, vi ∈ ℜ
m is the

control to be designed, and yi ∈ ℜ
m is the output, of the ith system.

The functions Fi(·, ·) and Hi(·) represent system/output dynamics
and are of appropriate dimensions. To achieve consensus, or
cooperative stability (defined below), all the outputs yi need to be
of the same dimension, but it would be straightforward to consider
the case that vi ∈ ℜ

mi withmi ≥ m. It is assumed that the functions
are differentiable, Hi(0) = 0, and ∂H(zi)/∂zi has rank m.

The cooperative control problem involves designing network-
enabled controls for the systems in (1) based on the information
structure represented by a digraph (V, E(t)), where V denotes
the set of ns nodes and E(t) denotes the set of directed edges.
Equivalently, the local information flow can be characterized by
the binary sensing/communication matrix

S(t) =

Sij(t)


∈ ℜ

ns×ns , Sii(t) ≡ 1, (2)
where Sij(t) = 1 if {j → i} ∈ E(t) (i.e., (yi − yj) is available to vi
at the time t), and Sij(t) = 0 if otherwise. That is, the presence of
edge {j → i} is denoted by binary value of Sij(t).

Definition 1. The system in (1) is said to be cooperative stable
if it is Lyapunov stable and if limt→+∞ yi(t) = c for all i (i.e.,
limt→+∞ y(t) = 1 ⊗ c , where 1 ∈ ℜ

ns is the vector of 1s, c ∈ ℜ
m

is the steady state value determined by z(t0) and by the history of
S(t), and ⊗ denotes Kronecker product).

A cooperative control is to achieve cooperative stability and, for
the systems in (1), it can be chosen to be of form:
vi = vsi(zi) + Kiui, (3)
where vsi(·) is the lower-level controller, Ki is the feedforward gain
matrix, and ui is the higher-level distributed controller of form

ui = ui

(y1 − yi)Si1, . . . , (yns − yi)Sins


. (4)

Under control (3), the systems in (1) become individually closed-
loop as

żi = Fi(zi, vsi + Kiui) , F c
i (zi, ui), yi = Hi(zi); (5)

should the systems be affine,

żi = F c
i (zi) + Gi(zi)ui, yi = Hi(zi). (6)

Lower-level control vsi(·) in (3) is an individual self-feedback
control for the ith system to achieve appropriate stability prop-
erties for its own dynamics. Higher-level control ui(·) in (4) is a
relative-output feedback control in terms of distributed informa-
tion from neighboring systems (i.e., (yi − yj)Sij rather than state
zj), and it is to ensure cooperative stability under any information
network topology with necessary connectivity.

Our goal is to develop the so-called modularized designs by
which both vsi(·) and ui(·) can all be synthesized separately. To
this end, input–output measures (in terms of passivity index and
output steady state) are presented to quantify the impacts of
heterogeneous systems (5) on their networked operation, and the
corresponding impact equivalence principle is established. Using
the principle, network-level distributed control ui can be designed
without the specific knowledge of individual dynamics, and
heterogeneous systems of (5) can be put into service anywhere.
That is, all the systems satisfying the impact measures are plug-
and-play ready for their networked operations.
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3. Tools for analyzing input–output properties

In this section, several tools are developed to investigate
such input–output properties as input-feedforward passivity and
output steady state for nonlinear systems and their networked
connections. These properties will be used to develop systematic
designs for passivity-short systems in the subsequent sections.

3.1. Passivity-short (PS) systems

Dissipativity theory (Willems, 1972) has been used to define
a number of passivity concepts. Passivity and L2 gain2are the
most commonly used forms of dissipativity, and they have been
extensively investigated (Brogliato, Lozano, Maschke, & Egeland,
2007; Byrnes, Isidori, & Willems, 1991; Popov, 1973; van der
Schaft, 2000; Zhao&Hill, 2008). In addition,more general concepts
such as passivity shortage (Sepulchre, Jankovic, &Kokotovic, 1997),
passivity indices (McCourt & Antsaklis, 2010) and generalized
passivity (Qu, 2012) have been introduced.

Definition 2. The ith system in (5) is said to be dissipative with a
storage functionVi(zi) and a supply rateΦi(zi, ui) ifVi(zi) is positive
semi-definite (p.s.d.) and

Vi(zi(t)) − Vi(zi(0)) ≤

 t

0
Φi(zi(τ ), ui(τ ))dτ . (7)

The input–output pair {ui, yi} of the ith system in (5) is said to be
input feedforward passive if, for some p.s.d. function ηi(·),

Φi(zi, ui) = −ηi(zi) + uT
i yi +

ϵi

2
∥ui∥

2, (8)

where quantity (−ϵi) is called the index of input feedforward
passivity. If ϵi ≤ 0 in (8), the index value is nonnegative and the
system is said to be passive. If ϵi ≥ 0, the index value is negative,
the system is said to be passivity-short (PS), and ϵi in (8) is called
impact coefficient.

It is clear from inequality (7) that PS systems include passive
systems as special cases. The following three propositions provide
several sets of conditions to check whether an input–output pair is
PS. Their proofs are included in the Appendix.

Proposition 1. Consider the ith system in (5).
(i) Its pair {ui, yi} is PS if and only if the fictitious pair {ui, yai } is

passive, where yai = yi + 0.5ϵiui is the augmented output.
(ii) Its pair {ui, yi} is PS if, for a C1 storage function Vi(·) and for

some constants γfi , γhi , γi3, γi4 > 0,

∥F c
i (zi, ui) − F c

i (zi, 0)∥ ≤ γfi∥u∥, ∥Hi(zi)∥ ≤ γhi∥zi∥,
(9)

∂Vi

∂zi

T

F c
i (zi, 0) ≤ −γi3∥zi∥2,

∂Vi

∂zi

 ≤ γi4∥zi∥. (10)

Part (ii) of Proposition 1 provides a Lyapunov test for nonaffine
systems, and part (i) can be used together with existing passiv-
ity tests, for instance, Kalman–Yakubovich–Popov (KYP) lemma
(Khalil, 2003; Popov, 1973; Wen, 1988) for linear systems. It is
worth noting that, by converse theorem (Khalil, 2003), the inequal-
ities in (10) are ensured if zero-command system żi = F c

i (zi, 0) is
both exponentially stable and globally Lipschitz but, as shown by
the Teel–Hespanha example (Teel & Hespanha, 2004), exponential
stability by itself does not imply (10).

2 L2 gain of γ ∈ ℜ is defined by Φi(zi, ui) =
γ 2

2 ∥ui∥
2

−
1
2 ∥yi∥2 , where η(t) ∈

L2 if ∥η(t)∥L2 ,


∞

t0
∥η(t)∥2dt

1/2
< ∞. Similarly, η(t) ∈ L∞ if ∥η(t)∥L∞ ,

supt≥t0 ∥η(t)∥ < ∞.
Proposition 2. Suppose that the ith system in (6) has a C1 storage
function. Then, its pair {ui, yi} is PS if and only if −LF ci

Vi is p.s.d.
and, for some ϵi > 0 and ϵ′

i ∈ [0, 1],

ηi(zi) , −LF ci
Vi −

1
2ϵi

∥LGiVi − HT
i ∥

2
≥ −ϵ′

iLF ci
Vi. (11)

Proposition 2 is applicable to affine systems and, in light of the
KYP property in Byrnes et al. (1991), inequality (11) can be referred
to as the passivity-short KYP property or, if ϵ′ > 0, the strictly
passivity-short KYP property.

It is straightforward to show using either Proposition 2 or 1 that
all linear Hurwitz systems are PS. Nonetheless, PS systemsmay not
necessarily be asymptotically stable, as evidenced by the following
proposition.

Proposition 3. Consider the linear system
żi1
żi2


=


Fi,11 0
0 0


zi +


Gi1
I


ui, yi =


Hi1 I


zi. (12)

It is PS if Fi,11 is Hurwitz.

It is well known (Khalil, 2003) that a passive system must be
minimum-phase and have relative degree of zero or one (or neg-
ative one). In comparison, PS systems include those that are of
higher relative degrees and/or nonminimum phase, which will be
illustrated later by examples (specifically, the first system in Ex-
amples 1, and 4). How to design vsi(·) to make systems become PS
is the subject of Section 4.1.

3.2. Positive network interconnection of PS systems

The fundamental property of passive systems is that a negative-
feedback connection of two passive systems is also passive (Khalil,
2003). The following example illustrates that a negative feedback
connection of two PS systems may not be PS. This is because the
overall system may become Lyapunov unstable, while by Defini-
tion 2 shortage of passivity with a positive definite (p.d.) storage
function still yields Lyapunov stability under ui = 0.

Example 1. Consider the two systems and their outputs:
ż11 = z12

ż12 = −
1
2
z12 −

1
2
z11 + u1,

ż21 = u2,


y1 = z11
y2 = z21.

The first system is Hurwitz, and pair {u1, y1} is PS (but not passive
due to relative degree 2). Pair {u2, y2} is passive (and also PS). The
negative feedback connection of these two systems is shown in
Fig. 1 and described by

d
dt

z11
z12
z21


=


0 1 0

−
1
2

−
1
2

−1

1 0 0


z11
z12
z21


+

0 0
1 0
0 1


ω1
ω2


,

which is Lyapunov unstable and hence cannot be PS. �

PS systems do have the nice property that positive-feedback
interconnections of PS systems individually with negative output
self-feedback are Lyapunov stable. Suppose that matrix S in (2) is
constant, the positive-feedback interconnections (with individual
negative self-feedbacks) are specified by

ui = kyi
ns
j=1

(yj − yi)Sij ⇐⇒ u = −((KhL) ⊗ Im)y, (13)
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Fig. 1. Negative feedback connection of two PS systems.

Fig. 2. Positive feedback connection of two PS systems with self negative output
feedbacks.

where L = (D − S) is the Laplacian, D = diag{S1} is a diago-
nal matrix containing the in-degrees of L, and Kh = diag{kyi} ∈

ℜ
ns×ns is the diagonal positive-gain matrix to be chosen. The fol-

lowing lemma establishes cooperative stability for the case if di-
graph (V, E) is strongly connected (in the sense that every node can
be reached from any other node through directed edges) or, equiv-
alently, that matrix S or L is irreducible (i.e., (I + L)ns−1 or Sns−1 is
positive). Note that the left eigenvector and eigenvalues associated
with Laplacian L can be estimated distributively (Qu, Li, & Lewis,
2014). Fig. 2 depicts all the connections when ns = 2.

Lemma 1. Suppose that the systems in (5) for i = 1, . . . , ns are PS
with p.d. and radially-unbounded storage functions Vi(·) andwith im-
pact coefficients ϵi ∈ [0, ϵ]. If L is irreducible, the distributed control
in (13) ensures cooperative stability as well as (yi − yj) ∈ L2 and
u ∈ L2 provided that kyi ∈ (0, ky), where ky = λ2(Γ L + LTΓ )/

[ϵλmax(LTΓ L)] > 0, γ = vec{γi} is the first left eigenvector of L
(defined by γ T L = 0), Γ = diag{γi}, λmax(A) denotes the maxi-
mum eigenvalue ofmatrix A, and λ2(A) represents the second smallest
eigenvalue of matrix A.

Proof. By Perron–Frobenius theorem, the first left eigenvector γ
of irreducible Laplacian L is positive. Define the overall storage
function to be V (z) ,

ns
i=1 γik−1

yi Vi(zi). It follows fromDefinition 2
and (13) that

V ≤ V (z(0)) +


i

γik−1
yi

 t

0


−ηi + uT

i yi +
ϵi

2
∥ui∥

2

ds

≤ V (z(0)) −


i

γik−1
yi

 t

0
ηids −

1
2

 t

0
yTQyds, (14)

where Q = Qh ⊗ Im, Qh = Wh − ϵLTKhΓ L, andWh = Γ L+ LTΓ . It
follows from Theorem 4.31 in Qu (2009) that matrix Wh ∈ ℜ

ns×ns

is p.s.d., is of rank (ns − 1), and has the property that ξ TWhξ = 0 if
and only if ξ = c1ns for some c ∈ ℜ. On the other hand, L1ns = 0
implies 1T

nsQh1ns = 0. Since Wh is independent of kyi while the
other matrix product in Qh is linear in kyi , we know that, under the
choices of kyi ∈ (0, ky), term yTQy assumes positive values except
for being zero when yi = yj for all i, j. Hence, Lyapunov stability,
(yi − yj) ∈ L2 and u ∈ L2 can be concluded from (14). It follows
from (5) and Lyapunov stability that yi are uniformly continuous
and hence, by Barbalat’s lemma (Khalil, 2003), limt→+∞ yi(t) = c
for all i. �

Lemma 1 presents a simple result of cooperative stability but
has two limitations. First, it is limited to the case when the di-
graph is strongly connected. Further analysis is needed for the
more general case when the graph is reducible. Second, while
limt→+∞ yi(t) = c is shown, little information is known about
c . In the cooperative control problem, the trivial solution of
limt→+∞ yi(t) = 0 is of little interest since convergence to the ori-
gin can easily be achieved by asymptotically stabilizing every one
of the systemswithout any network-level control. These issues are
investigated in the subsequent subsection.

3.3. Nontrivial consensus of PS systems

To study the consensus values, define the equilibrium set Ωe
i of

the ith system in (6) and its output image Ω
y
i as

Ωe
i , {zei ∈ ℜ

ni : F c
i (z

e
i ) = 0}

Ω
y
i , {yi ∈ ℜ

m
: yi = Hi(zei ), zei ∈ Ωe

i }.
(15)

Network-level distributed controls (4) such as (13) are chosen such
that, when output consensus is reached, ui = 0. Hence, it follows
from (14) andDefinition 2 that, shouldηi(zi) be p.d., zi(t) converges
to zero and in turn so does yi(t). That is, in order to achieve a
nontrivial consensus, it is necessary that none of the systems in
(5) is asymptotically stable under ui = 0. Explicit rank conditions
to ensure nontrivial consensus values are stated in the following
lemma.

Lemma 2. Suppose that the ith system in (6) satisfies the passivity-
short KYP property of (11). Then, the equilibrium set Ωe

i and its output
image Ω

y
i have dimensions of dim(Ωe

i ) = m and dim(Ω
y
i ) = m

provided that the following rank conditions hold (locally) at zi = zei :

rank


∂2LF ci

Vi

∂z2i


= ni − m, rank


∂2LF ci

Vi

∂z2i
∂Hi(zi)

∂zi

 = ni. (16)

Proof. We know from Proposition 2 that LF ci
Vi is n.s.d. and hence

Ωe
i in (15) is nonempty. For any zei ∈ Ωe and under ui = 0, we

have V̇i = LF ci
Vi = 0. Hence, function LF ci

Vi reaches its maximum
at zei , and the steady state of the ith system in (6) is the solution to
the algebraic equations:

∂LF ci
Vi(zei )

∂zei
= 0, H(zei ) = c. (17)

For any arbitrary choice of c ∈ ℜ
m, the second equation is always

solvable since ∂H(zi)/∂zi is of rank m. For dim(Ω
y
i ) = m, it is

necessary that dim(Ωe
i ) ≥ m. The proof is completed by apply-

ing the implicit function theorem (see Khalil, 2003) to the above
equations. �

For the stabilization problem, singleton Ωe
i = {0} would be

needed; for the problems of output tracking or consensus, Ωy
i =

ℜ
m would be desired. The above lemmaprovides the technical con-

ditions, and the subsequent example illustrates the corresponding
Lyapunov design.
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Example 2. Consider the uncertain system

żi1 = z3i1 + zi2, żi2 = ϕi(zi)θi + vi, yi = zi1,

where θi is a vector of unknown parameters. Applying the back-
stepping adaptive design (Krstic, Kanellakopoulos, & Kokotovic,
1995), we can choose an augmented storage function V ′

i (zi1, zi2, θ̂i)
as

V ′

i =
ki
2

|yi|2 +
ki
2

zi1 +
1
ki

(zi2 + z3i1)
2 +

ki
2

∥θi − θ̂i∥
2

and an adaptive feedback control vi = −ϕi(zi)θ̂i−(2ki+3z2i1)(z
3
i1+

zi2) + ui and
˙̂
θ i = ϕT

i (zi)

zi1 +

1
ki
(zi2 + z3i1)


, under which V̇ ′

i =

−|zi2 + z3i1|
2
+

1
ki
(zi2 + z3i1)u + yiui. It is apparent that the system

satisfies both (11) (with ϵi ≥ 1/(2k2i )) and (16). �

The existence of a non-trivial equilibrium set does not nec-
essarily mean that any nontrivial equilibrium value is a asymp-
totically stable equilibrium. The following theorem ensures both
input–output convergence and internal stability so that technical
development in the rest of the paper can be done in terms of only
input–output properties.

Theorem 1. Consider the systems in (6) under control

ui = kyi [ri(t) − yi], (18)

where ri(t) is the command signal satisfying [ri − c] ∈ L2 and
limt→+∞ ri(t) = c for some constant c ∈ ℜ

m. Then,

• If the system satisfies the strictly passivity-short KYP property
of (11)with aC3, p.d., radially unbounded storage function Vi and
with impact coefficient ϵi and if rank condition (16) holds in ℜ

ni ,
control (18) with kyi ∈ (0, 2/ϵi) ensures input-to-state stability
(ISS).

• Alternatively, if pair {ui, (yi − c)} of the system is PS with p.d. ra-
dially unbounded storage function V c

i (zi, c) and impact coefficient
ϵc
i ∈ [0, 2/kyi), the system has Lyapunov stability and unity DC

gain (in the sense of limt→+∞ yi(t) = c), and (yi − c), ui ∈ L2.

Proof. Define a scalar function ξ(λ) , LF ci (w)Vi(w)|w=λzi , where

λ ∈ [0, 1]. Direct computation yields that ξ(0) =
∂ξ(λ)

∂λ


λ=0

=

0, ξ(1) = LF ci
Vi, and

∂2ξ(λ)

∂λ2
= zTi

∂2LF ci (w)Vi(w)

∂w2


w=λzi

zi. (19)

It follows from the mean value theorem in Khalil (2003) that

LF ci
Vi =

∂ξ(λ)

∂λ


λ=λ∗∈(0,1)

= λ∗
∂2ξ(λ)

∂λ2


λ=λ∗∗∈(0,λ∗)

,

which together with (19) and rank condition (16) imply that
−LF ci

Vi is p.s.d. and radially unboundedwith respect to all the vari-
ables in zi except for those m variables solved from yi = Hi(zi).
Hence, the term (−a1LF ci

Vi + a2∥yi∥2) is p.d. and radially un-
bounded for any a1, a2 > 0.

It follows from Proposition 2 and from the strictly passivity-
short KYP property that, under control (18),

V̇i ≤ −ηi(zi) + kyiy
T
i (ri − yi) +

ϵi

2
k2yi∥ri − yi∥2

≤ ϵ′

iLF ci
Vi −

1
2
(2 − ϵiky)kyi∥yi∥

2
+ (1 − ϵiky)kyi r

T
i yi

+
ϵi

2
k2yi∥ri∥

2 (20)
≤ ϵ′

iLF ci
Vi −

2 − ϵiky
4

kyi∥yi∥
2
+

(1 − ϵiky)2

(2 − ϵiky)
kyi∥ri∥

2

+
ϵi

2
k2yi∥ri∥

2, (21)

from which ISS can be concluded by recalling that the sum of the
first two terms on the right hand side of (21) is negative definite
and radially unbounded with respect to zi and by applying Theo-
rem 4.19 in Khalil (2003).

To show both unity DC gain and Lyapunov stability, we let
V c
i (zi, c) denote the storage function for pair {ui, (yi−c)}. It follows

from the pair being PS that, for some ηc
i (·) ≥ 0 and for any ϵ′ > 0,

V c
i (zi, c) − V c

i (zi(0), c) +

 t

0
ηc
i (zi)ds

≤ kyi

 t

0
(ri − yi)T (yi − c)ds + k2yi

ϵc
i

2

 t

0
∥ri − yi∥2ds

≤ −
kyi [2 − kyi(ϵ

c
i + ϵ′)]

2
∥ri − yi∥L2 +

1
2ϵ′

∥ri − c∥L2 , (22)

from which Lyapunov stability and (yi − c) ∈ L2 can be concluded
by using the Chebyshev inequality ∥yi − c∥2

≤ 2(∥yi − ri∥2
+

∥ri − c∥2). Barbalat lemma (Khalil, 2003) can then be invoked to
conclude the unity DC gain. �

It is possible to have the output track the input while some of
the internal state variables do not settle down. In particular, it is
necessary to establish internal stability because a counter example
could be constructed according to the equality version of (20) in the
above proof. Also in Theorem 1, unity DC gain is established under
the condition of pair {ui, (yi−c)} being PS for any c ∈ ℜ

m, which is
necessary for achieving nontrivial consensus. The connection from
pair {ui, yi}being PS to pair {ui, (yi−c)}being PSwill be established
in Section 3.4.

The following theorem extends Lemma 1 to the leader–follow-
ers problem in which all the outputs of the systems in a strongly
connected network converge to the steady state of leader r0(t).

Theorem 2. Let r0(t) ∈ ℜ
m with limt→+∞ r0(t) = c and (r0 −

c) ∈ L2 denote the state of the leader, and let binary function S ′

i0
represent the connectivity from the leader to the ith system. Consider
the systems in (5), and suppose that their pairs {ui, (yi − c)} are PS
with p.d. radially-unbounded storage functions V c

i (zi, c) and impact
coefficients ϵc

i ∈ [0, ϵ]. Then, if L′ , vec{−S ′

i0} ≠ 0, there
is a diagonal p.d. matrix Γa such that (ΓaLa + LTaΓa) is p.d., and
the following distributed leader–followers control ensures cooperative
stability (with limt→+∞ yi(t) = c for all i), (yi − yj) ∈ L2 and u ∈ L2:

ui = kyi
ns
j=1

(yj − yi)Sij + kyi(r0 − yi)S ′

i0

⇐⇒ u = −((KhLa) ⊗ Im)y − ((KhL′) ⊗ Im)r0,

(23)

where S = [Sij] is as defined in (2), Kh and L are as defined in (13)with
L being irreducible, La = L + diag{S ′

i0}, and L = [L′ La] is the
overall Laplacian, and kyi < λmin(Γ2L2 + LT2Γ2)/[ϵλmax(LT2Γ2L2)]
with λmin(A) denoting the minimum eigenvalue of matrix A.

Proof. Since L has zero row sums and L′ is nonpositive and
nonzero, it follows from Lemma 4.32 and Theorem 4.25 in Qu
(2009) that matrix La must be a nonsingular M-matrix and hence
diagonal p.d. matrix Γa = diag{γ a

i } exists such that Wa = ΓaLa +

LTaΓa is p.d. Hence, matrix Qa , Wa − ϵLTaKhΓaLa is also p.d. for all
small values of kyi as specified.

It follows from (23) that

u = −((KhLa) ⊗ Im)(y − c) − ((KhL′) ⊗ Im)(r0 − c).
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Define the overall storage function to be V
c
(z, c) ,

ns
i=1 γ a

i k
−1
yi

V c
i (zi, c). In the case that r0(t) = c and for some ηc

i (·) ≥ 0 and
ϵc
i ∈ [0, ϵ], we have

V
c
(z, c) − V

c
(z(0), c)

≤


i

γi

kyi

 t

0


−ηc

i + uT
i (yi − c) +

ϵc
i

2
∥ui∥

2

ds

≤ −
1
2

 t

0


i

2γiη
c
i

kyi
+ (y − c)TQ (y − c)


ds, (24)

where Q = Qa ⊗ Im. For the general case of (r0 − c) ∈ L2, we
can establish (as we did with inequality (22)) inequality (24) by
including an additive term of ∥r0 − c∥L2 into the right hand side.
Hence, cooperative stability is concluded. �

3.4. Canonical form of cooperative PS systems

In this subsection, a canonical form is developed for PS systems
that can achieve nontrivial consensus. It follows from rank condi-
tion (16) and the proof of Lemma 2 that, for PS systems (of pairs
{ui, yi}) to be able to reach a non-trivial consensus anywhere in
ℜ

m (i.e., Ωy
i = ℜ

m), each of the systems must implicitly contain
m pure integrators (because m of the equations in (17) become
degenerate). As illustrated by Theorems 1 and 2 and their proofs,
cooperative stability (of limt→+∞ yi(t) = c) could be easily estab-
lished if pairs {ui, (yi − c)} are known to be PS for all c ∈ ℜ

m, while
a Lyapunov argument based on the rank condition is technically
involved (in terms of such requirement as differentiability, strictly
passivity-short KYP condition, etc.). Nonetheless, the existence of
pure integrators allows us to choose the canonical form of desired
PS systems as stated below and revealed by the rank condition.

Definition 3. The ith system in (6) is said to be a cooperative PS
system if there exists a diffeomorphic transformation zi = Zi(wi)
under which the system in (6) is transformed into the following
canonical form:
ẇi1
ẇi2


=


Fwi1(wi1, wi2)

0


+


Gwi1(wi1, wi2)

I


ui,

yi = Hwi(wi1, wi2) + βiwi2,

(25)

where Hwi(0, wi2) = 0 and constant βi ≠ 0 has the properties
that, for any ui ∈ L2 and for uniformly bounded wi2, the reduced
order system ẇi1 = Fwi1(wi1, wi2) + Gwi1(wi1, wi2)ui is globally
asymptotically stable so that Hwi(·, ·) ∈ L2 (or uniformly bounded
if Hwi(·, ·) ≡ 0).

The ith system in (25) is PS and has the equilibria of we
i =

[0 cT ]T for any c ∈ ℜ
m, it satisfies the rank condition (under dif-

ferentiability), and it includes the system in (12) as a special case.
Since Lyapunov criteria exist to check L2 stability of its reduced or-
der system (see Theorems 5.1 and 5.5 in Khalil, 2003), the following
lemma focuses upon the relationship of PS property between pairs
{ui, yi} and {ui, (yi −c)}. The relationship together with Theorem 1
makes the modularized design possible. The corresponding state
transformation is illustrated in Example 3.

Lemma 3. If pair {ui, yi} of system (25) is PS with a C1 storage
function of the form

Vwi(wi) = Vwi1(wi1, wi2) +
1
2
βi∥wi2∥

2, (26)

then its pair {ui, (yi − c)} is also PS with the same impact coefficient
and for all c ∈ ℜ

m.
Proof. It follows from {ui, yi} being PS that

V̇wi(wi) = [Fwi1 + Gwi1ui]
T ∂Vwi1

∂wi1
+ uT

i
∂Vwi1

∂wi2
+ βiuT

i wi2

≤ −ηwi(wi1) + uT
i yi +

ϵi

2
∥ui∥

2, (27)

where ϵi ≥ 0. Now, consider storage function V c
wi

(wi, c) = Vwi1

(wi1, wi2) +
1
2βi

wi2 −
c
βi

2, which is p.s.d. It follows from (27)

that V̇ c
wi

(wi, c) ≤ −ηwi(wi1) + uT
i (yi − c) +

ϵi
2 ∥ui∥

2, from which
pair {ui, (yi − c)} being PS is obvious. �

Example 3. Consider the following system:
żi1 = z3i1 + zi2
żi2 = −(2ki + 3z2i1)(z

3
i1 + zi2) + ui,

yi = zi1.

As was shown in Example 2, the pair {ui, yi} is PS. Under state
transformation of wi1 = z3i1 + zi2 and wi2 = 2kizi1 + (z3i1 + zi2), the
system is transformed into (25) as

ẇi1 = −2kiwi1 + ui, ẇi2 = ui, yi = −
1
2ki

wi1 +
1
2ki

wi2,

in which wi1 has L2 stability. �

4. Modularized design: fixed topology

The proposedmodularized designmethodology is to separately
synthesize self-feedback controls for each of the individual sys-
tems as well as distributed controls.

4.1. Lower-level designs of self-feedback control

At the lower level, self-feedback control vsi(zi) should individ-
ually be chosen to make every physical system of form (6) become
a cooperative PS system as defined in Definition 3. Two systematic
design procedures are presented below: one for linear systems, and
the other for feedback linearizable nonlinear systems.

The first procedure is a matrix-theoretical design approach
applicable to all linear systems of form

żi = Fizi + Givi, yi = Hizi, (28)

where zi ∈ ℜ
ni , {Fi, Gi, Hi} is an irreducible realization (Chen,

1984) of the input–output mapping from vi to yi, and
Gi =


Gi1 · · · Gim


. For the system in (28), the self-feedback

control3 is of form

vi = −Ksizi + Kiui, (29)

where Ksi is the self-feedback gain matrix, and Ki is the feedfor-
ward gain matrix. Given controllability, positive integers pij exist
such that controllability matrix

Ci =


Gi1 · · · F pi1−1

i Gi1

 · · ·Gim · · · F pim−1
i Gim


m
j=1

pij = ni
(30)

is nonsingular. The following theorem provides the design of gain
matrices Ksi and Ki.

3 If zi is not available, a dynamic self-feedback control vi can be designed by using
the separation principle and employing an observer to estimate zi from yi . Should
the realization in (28) not beminimal, an irreducible realization can be found (Chen,
1984) before applying the proposed procedure. In the event that system (28) with
Ksi = 0 can be mapped into (12), vi does not require absolute measurement of any
state variable.
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Theorem 3. For any chosen set of stable eigenvalues λij (j = 1,
. . . , (ni − m)), define desired characteristic polynomials Eij(s) to be
Eij(s) = sE ′

ij(s), where

m
j=1

E ′

ij(s) = (s − λi1) · · · (s − λi(ni−m)). (31)

Let qij denote the (pi1 + · · · + pij)th row of C−1
i with pij and Ci being

defined by (30). Then, control (29) with gain matrices

Ksi =

 qi1F
pi1−1
i Gi
...

qimF
pim−1
i Gi


−1  qi1Ei1(Fi)

...
qimEim(Fi)

 ,

Ki =

 qi1F
pi1−1
i Gi
...

qimF
pim−1
i Gi


−1

K ′

i , K ′

i = B−1
i2 C−1

i2

(32)

makes the system in (28) be a cooperative PS system.

Proof. It follows fromWang and Juang (1995) that pole placement
formulas of Ksi and Ki in (32) (except for that of K ′

ij) place the closed
loop poles at λij (for j = 1, . . . , (ni − m)) and 0 (of geometric
multiplicity 1). Hence, there is a similarity transformation Ti such
that, under state transformation xi = T−1

i zi, system (28) under
control (29) becomes

ẋi1
ẋi2


=


Ai,11 0
0 0


xi +


Bi1
Bi2


(K ′

i ui)

yi =

Ci1 Ci2


xi,

(33)

where Ai , T−1
i (Fi − GiKsi)Ti, Bi , T−1

i Gi with Bi2 being square,
Ci , HiTi, and |λijI − Ai,11| = 0 for j = 1, . . . , (ni − m). Since con-
trollability and observability are invariant under similarity trans-
formation, a direct computation of controllability and observability
matrices of system (33) reveals that matrices Bi2 and Ci2 are invert-
ible. Transformation ofwi1 = xi1 andwi = Ci2xi2 maps system (33)
into the form of (12) with Ai,11 being Hurwitz, and the resulting
system is a special case of (25). �

Example 4. Consider the nonminimum-phase system:

żi1 = zi2, żi2 = vi, yi = −zi1 + zi2,

for which yi(s)/vi(s) = (s−1)/s2. Under self-feedback control law
vi = −2zi2 − ui, the individually closed-loop system becomes

żi =


0 1
0 −2


zi +


0

−1


ui, yi =


−1 1


zi.

The transformation of wi1 = zi2 and wi2 = −(2zi1 + zi2) maps the
system into

ẇi =


−2 0
0 0


wi +


−1
1


ui, yi =


3
2

1
2


wi,

which is a cooperative PS system. �

The second design method of usi(zi) is the backstepping design
method (Krstic et al., 1995)which is applicable to the class of affine
minimum-phase systems. Consider the nonlinear affine system

żi = Fi(zi) + Gi(zi)vi, yi = Hi(zi). (34)

The above system is said to have well-defined relative degree
(Isidori, 1995; Khalil, 2003) of κi if the following set of conditions
in terms of Lie derivatives and Lie brackets are met: LGiL

j
Fi
yi = 0
for j = 0, . . . , κi − 2 and [LGiL
κi−1
Fi

yi]−1 exist. Under this assump-
tion, we can choose the following state transformation: z ′

i1 = yi,
z ′

ij =
1
ai0

[LFiz
′

i(j−1) + ai(j−1)z ′

i(j−1)] for j = 2, . . . , κi, and ξi =

ξi(zi) ∈ ℜ
ni−κim, where ail > 0 for l ∈ {1, . . . , κi}, ai0 = (ai1 · · ·

aiκi)
1/κi , z ′

i = vec{z ′

ij} ∈ ℜ
κim is the state of input–output dy-

namics, and ξi should be chosen such that the mapping from zi to
[(z ′

i )
T ξ T

i ]
T is diffeomorphic. Applying the transformation to (34)

and choosing self-feedback control

vi = [LGiL
κi−1
Fi

yi]−1
[−LFiz

′

iκi − aiκiz
′

iκi + ai0z ′

i1 + ai0ui], (35)

yield the transformed system of

yi = z ′

i1

ż ′

ij = −aijz ′

ij + ai0z ′

i(j+1), j = 1, . . . , κi − 1

ż ′

κi
= −aiκiz

′

iκi + ai0z ′

i1 + ai0ui

ξ̇i = φi(ξi, z ′

i ),

(36)

whereφi(·) represents the so-called internal dynamics. The ith sys-
tem in (34) is said to be minimum-phase if the zero dynamics ξ̇i =

φi(ξi, 0) is asymptotically stable. The following theorem provides
the PS property and a canonical form forminimum-phase systems.

Theorem 4. Suppose that the ith system in (34) is minimum-phase
and of relative degree κi. Then, the resulting individually closed-loop
system (36) under control (35) is a cooperative PS system, and it can
be mapped into either (25) or the minimum-phase canonical form of
ẇ′

i1

ẇ′

i2


=


F ′

w′
i1
(w′

i1, w
′

i2)

(A′

i ⊗ Im)w′

i2


+


0

B′

i ⊗ Im


ui

yi = H ′

i (w
′

i1, w
′

i2) + (C ′

i ⊗ Im)w′

i2

(37)

where B′

i =

0 · · · 0 aiκi

T , C ′

i =

1 0 · · · 0


, H ′

i (0, w
′

i2)
= 0, and

A′

i =


−ai1 ai1 0 · · · 0

0 −ai2 ai2
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −ai(κi−1) ai(κi−1)
aiκi 0 · · · 0 −aiκi

 .

Proof. It is straightforward to verify that, under the transforma-
tion of w′

i1 = ξi and w′

i2 = vec{w′

i2,j} with w′

i2,1 = z ′

i1 and

w′

i2,j =
aj−1
i0

ai1···ai(j−1)
z ′

ij for j = 2, . . . , κi, system (36) is mapped into
(37) with H ′

i (·, ·) ≡ 0.
It is apparent that −A′

i is the Laplacian of a ring digraph, hence
matrix −[A′

i + (A′

i)
T
] is p.s.d. and of rank (κi − 1). That is, matrix A′

i
has (κi−1) eigenvalues in the left open half s-plane and one simple
eigenvalue at the origin. It is straightforward to show that, under

the transformation of wi2 =
κi

j=1
w′
i2,j
aij

and wi1,j = −w′

i2,j + βiwi2

for j = 1, . . . , κi − 1 and with βi = (a−1
i1 + · · · + a−1

i(κi−1))
−1,

the system of z ′

i is transformed into (12). Incorporating internal
dynamics into wi1 yields (25). �

4.2. High-level design of network-enabled controls

At the network level, the communication/sensing topology is
specified by digraph {V, E} or matrix S as in (2). Suppose without
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loss of generality that the Laplacian L (after permutation) is in the
lower triangular form

L =


L′

11 0 · · · 0

L′

12 L′

22
. . .

...
...

. . . 0
· · · L′

qq

 (38)

where L′

ii ∈ ℜ
li×li are irreducible. If L is irreducible, then q = 1 and

L′

11 = L. Graph {V, E} is said to have at least one global reachable
node (from which every other node can be reached) if and only if
matrix L in (38) is lower triangular complete in the sense that for any
i ∈ {2, . . . , q}, L′

ij with j < i are not all identically zero.
A network-enabled distributed control must conform with the

information structure S as defined in (2). In the proposed network-
level design, the distributed control is simply chosen to be as in (13)
which is known to work for the fictitious integrator systems

ẏi = ui, i = 1, . . . , ns. (39)

Our goal is to show that the control in (13) also works for hetero-
geneous systems. To this end, the concept of PS systems has been
used to quantify the impact of heterogeneous dynamics on their
networked operation, and two designs of self-feedback controls
vsi have been presented to make the heterogeneous systems be-
come cooperative PS systems. In the next subsection, it is shown,
using the impact equivalence principle (which includes Lemma 1
and Theorem 2 as special cases), that these controls separately de-
signedworkwell in any networked operation and that a non-trivial
global consensus emerges if and only if Laplacian L is lower trian-
gularly complete.

4.3. Impact equivalence principle

The impact equivalence principle, stated as Theorem 5, simplifies
the design and analysis of cooperative networked systems bymod-
ularizing the designs of individual controls as well as the network-
level controls. In particular, the networked control of cooperative
PS systems does not require any explicit information about the het-
erogeneous physical systems except that their impact coefficients
are not larger than a design threshold ϵ. Hence, heterogeneous sys-
tems can be switched into and out of service at any node in the
overall network. This plug-and-play feature of networked opera-
tions could be advantageous in many applications.

Theorem 5. Suppose that self-feedback controls vsi(·) are designed
(as was done in Section 4.1) such that the resulting systems become
cooperative PS systems (as defined in Definition 3). Then, the
distributed control in (13) always ensures either local or global (non-
trivial) consensus of their outputs provided that the gains kyi are
chosen according to

0 < kyi < min
i∈{1,2,...,q}

λ′(ΓiL′

ii + (L′

ii)
TΓ1)

ϵλmax((L′

ii)
TΓiL′

ii)
, (40)

where L′

ii are as defined in (38), Γ1 is determined based on L′

11 as
was done in Lemma 1, Γi with i ≥ 2 is determined based on L′

ii as
solved in Theorem 2, and λ′(A) denotes the smallest nonzero eigen-
value of matrix A. Furthermore, a global (non-trivial) consensus (of
limt→+∞ yi(t) = c for all i) is ensured if and only if graph {V, E}

has at least one global reachable node.

Proof. For all the systems in the network, letNµ be their index sets
corresponding to blocks of L′

µµ in (38). The proof is inductive with
respect to µ ∈ {2, . . . , q} as in the following steps:

Step 1 (µ = 1): It follows fromLemma1 that zi ∈ L∞, (yi−yj) ∈

L2, ui ∈ L2 and limt→+∞ yi(t) = c1 for all i, j ∈ N1 and for some
c1 ∈ ℜ
m. To find c1, we know from the first left eigenvector γ1 of

L′

11 that γ T
1 L

′

11 = 0 and in turn [(γ T
1 K

−1
h1 ) ⊗ Im]uN1 ≡ 0, where

Kh1 = diag{kyi : i ∈ N1}. It follows from ẇi2 = ui in (25) that


i∈N1

γ1i

kyi
wi2 ≡ c1


i∈N1

γ1i

βikyi
H⇒ c1 ,


i∈N1

γ1i
kyi

wi2(t0)
i∈N1

γ1i
βikyi

. (41)

Using the output equation of (25) and applying Chebyshev inequal-
ity and Barbalat lemma, we can verify that (yj −c1) ∈ L2 and hence
limt→+∞ yi(t) = c1 for any j ∈ N1 since

∥yj − c1∥2


i∈N1

γ1i

βikyi

2

=


i∈N1

γ1i

βikyi
[(yj − yi) + (yi − βiwi2)]


2

≤ 2mN1


i∈N1

γ 2
1i

β2
i k2yi

[∥yj − yi∥2
+ ∥Hwi∥

2
],

where mN1 is the number of entries in index set N1.
Step 2 (µ = 2): If L′

21 = 0, we can repeat step 1 to show that
limt→+∞ yi(t) = c2 for all i ∈ N2, where c2 ∈ ℜ

m is a local con-
sensus (among the systems in setN2) and can similarly be found as
was done in (41) (but generally c2 ≠ c1). If L′

21 ≠ 0, all the nodes in
N2 can be reached from any node in N1, and it follows from Theo-
rem 2 that zi ∈ L∞, (yi − yj) ∈ L2, ui ∈ L2 and limt→+∞ yi(t) = c1
for all i, j ∈ N2.

Step p (for p = 3, . . . , q): Suppose that the result holds for
µ = 1 up to µ = p − 1. Then, the result of µ = p can be con-
cluded in a similar fashion as that of µ = 2. �

5. Modularized design: varying topologies

In many applications, networked controls need to be imple-
mented without the restriction of sensing and communication
topologies being fixed. To this end, let ℵ be the set of positive in-
tegers and let {tk : k ∈ ℵ} be the time sequence at which the
communication/sensing matrix S(t) defined in (2) experiences a
change. Then, for any sub-sequence {kη : η ∈ ℵ}, the composite
graph (V, E c(η)) corresponds to the composite matrix

Sc(η) , S(tkη+1−1) ◦ S(tkη+1−2) ◦ · · · ◦ S(tkη ), (42)

where ◦ denotes the Hadamard product. The following definition
prescribes the cumulative information flow, and the subsequent
theorem provides a class of PS systems that are plug-and-play
ready and can successfully be operated with an intermittent
information network.

Definition 4. A varying graph (V, E(t)) is said to be cumulatively
connected if (tkη+1 − tkη ) ≤ T for some constant T ≥ 0 and if, for
every η, the composite graph (V, E c(η)) has at least one globally
reachable node or, equivalently, the composite matrix Sc(η) is
lower triangular complete.

Theorem 6. Suppose that control vsi(·) in (3) is designed so that,
under a diffeomorphic transformation zi = Z′

i(w
′

i), the systems in the
form described in (6) can be transformed into (37) in which w′

i1 ∈ L∞

and ∥H ′

i (w
′

i1, w
′

i2)∥ ≤ αi1(w
′

i(t0))e
−αi2(t−t0) for some αi1(w

′

i(t0)) ≥

0 and αi2 > 0. Consider the distributed control (13) with kyi ∈

(0, aiκi/ns] and with S(t) and L(t) being time varying. Then, a
nontrivial consensus of limt→+∞ yi(t) = c can be ensured if and
only if the varying graphs are cumulatively connected.
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Proof. It follows from (13) and (37) that

ui = kyi
ns
j=1

Sij(t)[(C ′

j ⊗ Im)wj2 − (C ′

i ⊗ Im)wi2) + δi(t),

where δi(t) = kyi
ns

j=1 Sij(t)[H
′

j (w
′

j1, w
′

j2)−H ′

i (w
′

i1, w
′

i2)]. Defining
x = vec{wi2} and δ = vec {δi(t)}, we have

ẋ = −


L
′
(t) ⊗ Im


x + [B′

⊗ Im]δ, (43)

where B′
= diag{B′

i}, D(t) = diag{S(t)1}, L(t) = D(t) − S(t), and
L
′
(t) = [L

′

ij(t)] with

L
′

ij(t) =


−A′

i + Lii(t)B′

iC
′

i if i = j
Lij(t)B′

iC
′

i if i ≠ j.

It follows from Lemma 5.5 in Qu (2009) that Laplacian L
′
has the

same topological property as that of L(t). System (43) can simply
be viewed as a piecewise-constant linear systemwith diminishing
uncertainty δ(t), and hence its solution is

x(tk+1) = P(k)x(tk) + δ′(k), (44)

where P(k) = e−


L′(tk)⊗Im


(tk+1−tk) is nonnegative and row-

stochastic, and

|δ′

i(k)| =

 tk+1

tk


e−


L′(tk)⊗Im


(t−τ)B′δ(τ )


i
dτ


≤

 tk+1

tk
max

j
|δj(τ )|dτ

=

max
j

α′

j1

min
j

α′

j2


e
−min

j
α′
j2tk

− e
−min

j
α′
j2tk+1


.

It is known (e.g., Theorem 4.53 in Qu, 2009) that, if δ′(k) = 0, x(tk)
reaches consensus as k approaches infinity if and only if varying
graphs are cumulatively connected. Since the nonnegative series

∞
k=0

max
i

|δ′

i(k)| ≤

max
j

α′

j1

min
j

α′

j2
e
−(min

j
α′
j2)t0

is convergent and therefore is a Cauchy sequence, we conclude
from Lemma 5.29 in Qu (2009) that system (44) reaches consensus
if it does when δ′(k) = 0. �

6. Conclusions

In this paper, an input feedforward passivity index is used
to characterize the input–output relationship for heterogeneous
dynamical systems of potentially high-relative degrees and/or
nonminimum-phase. It is shown that self-feedback controls can
individually be designed tomake heterogeneous systems ready for
networked operations, that a network-enabled distributed control
can be designed independently of specific dynamics, and that
these controls separately designed can together ensure a global
(nontrivial) consensus under minimum information flows. Both
fixed and varying topologies of the local information network are
considered.
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Appendix. Proofs

Proof of Proposition 1. (i) is obvious since (8) is equivalent to
Φi(zi, ui) = uT

i y
a
i − ηi(zi).

(ii) It follows from (9) and (10) that

V̇i =


∂Vi

∂zi

T

F c
i (zi, ui)

≤ −γi3∥zi∥2
+

∂Vi

∂zi

 · ∥F c
i (zi, ui) − F c

i (zi, 0)∥

≤ −γi3∥zi∥2
+ γfiγi4∥zi∥ ∥ui∥ + [∥yi∥ · ∥ui∥ + uT

i yi]

≤ −γi3∥zi∥2
+ (γfiγi4 + γhi)∥zi∥ ∥ui∥ + uT

i yi,

from which inequality (7) can always be established for ϵi ≥

(γfiγi4 + γhi)
2/(2γi3). �

Proof of Proposition 2. It follows from (6) that

V̇i = LF ci
Vi + (LGiVi)ui = −η′

i(zi, ui) + uT
i yi +

ϵi

2
∥ui∥

2,

where η′

i(zi, ui) , −LF ci
Vi − (LGiVi − HT

i )ui +
ϵi
2 ∥ui∥

2. Hence, the
system is passivity-short if and only if, for all ui ∈ ℜ

m, function
η′

i(zi, ui) is p.s.d. The proof is completed by noting that η′

i(zi, ui) ≥

ηi(zi) and that, when ui = (LGiVi −HT
i )T/ϵi, η′

i(zi, ui) = ηi(zi). �

Proof of Proposition 3. Since Fi,11 is Hurwitz, matrix solution Pi,11
to Lyapunov equation Pi,11Ai,11 + AT

i,11Pi,11 + I = 0 is p.d. Choosing
storage function Vi =

1
2 z

T
i1Pi,11zi1 +

1
2 z

T
i2zi2, we know that the

system is PS because

V̇i = −∥zi1∥2
+ zTi1[Pi,11Gi1 − Hi1]ui + yTi ui

≤
ϵi

2
∥ui∥

2
+ yTi ui,

where ϵi ≥ ∥Pi,11Gi1 − Hi1∥
2/2. �
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